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In this paper we present the result of the experiments performed to obtain the characteristics
curves for five composite materials with random distribution of reinforcement. From these curves
we determined the elasticity modulus and the resistance to fracture. Using the modal identification
method we determined the first eight eigenmodes for two bars from composite materials (Bar 1 –
phenolic fireproof resin reinforced with fiberglass; Bar 2 – ortophtalic polyesteric resin reinforced
with fiberglass), embedded at one end and free at the other. We determined the eigenpulsations
for the modes considered and we used the first four modes for the calculus of elasticity modulus.
The results obtained by traction testing compared with the one from modal identification method
certify the utilization of modal analysis in the determination of properties of composite structures.
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The composite materials enable to obtain a great
diversity of mechanical properties. This fact makes
difficult the determination of mechanicalcharacteristics
depending on the proportion of composite components.
The existing theories point out the composites like
homogeneous, generally anisotropic where the material
constants are obtained function of the properties of the
constituents. Usually good results are obtained in static
problems, but serious deficiencies appear concerning the
vibrations, especially due to attenuation which was
observed in the case of composite materials.

A frequent used theory is the theory of the blends,
based on the elementary similitude with the blends of
gases, in which the constituents coexist, each exercising
the own partial pressure. With the observance of
composite structure, the constituents are presumed
heteronymous in space, each having individual
deformations. The laws of the blends can be easily
formulated, but the principal problem of the application
of the theory of the blends in the case of composite
blends is the analytic specification of interactions of
constituents and of the constituent equations for the blend,
being known the geometrical distribution and the
constituent equations for every individual component.
The complexity of this problem can be presented
considering the case of fibers arrangement in an
unidirectional composite

If the fibers are arranged regularly, it is possible the
identification of an elementary cell that is repeated in
section. But, in the routine, at the realization of composite
materials, the fibers are randomly distributed, some of
them being included entirely in the matrix, as the others
keep contact between them. From the analytic point of
view, the real solution is found out between the solution
for the case when the fibers are isolated among them
and the solution in the case when they are in contact.

The results obtained harmonize well with the reality
only in the Young’s modulus case along the fibers and in
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Poisson’s coefficient case longitudinal, the rest being able
to be used only to find out the order of size (measure,
proportion) of elastic coefficients.

A series of simple relations for Young modulus and
Poisson coefficient along the fibers which according to
those given by blends theory are proposed starting from
the results theoretically obtained in paper [1].

For the others elastic coefficients it is also suggested
one relation, but which has the disadvantage to depend
on a parameter that characterizes the interaction fibers-
matrix, the geometry of the fibers, their arrangement,
but this parameter must be determined in an empiric
manner.

For some composite reinforced with fibers, the
existence of a nonlinear relation among tension–
deformation had been shown [2].

For instance, at the composites epoxidic boron-resin
or epoxidic bleak lead-resin, the nonlinear behaviour is
due to the substance of the matrix that affects basically
the slip module, while the relations tension-deformation
on the fibers direction and also on the transverse direction
remain almost linear.

Methods of analysis of nonlinear relation of
constituents were  suggested as well [3-6].

Also, some types of load were considered in the case
of plates with nonlinear properties [7-8].

The answer of the reinforced plates with fibers, at
the dynamic charge was determined in [9], while in [10]
led a research on the nonlinearity physical influence on
the dynamic behaviour of the composite plates.

The dynamic behaviour for composite bars subjected
to the solicitation of shock types were researched [11-
13].

In [14] were obtained theoretical results and
experimental determinations. Using a matrix method
were determined the main elastic characteristics of
composite materials and their variation depending on the
volumetric proportion of reinforcement.
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The influences of damage of material on the vibrations
of composite bars with thin layers were determined  [16-
17].

The characteristics curves
Due to the complexity of the problem and to the big

number on the parameters on which the properties of
composite materials, depend they should be
experimentally verified  it if necessary to be
experimentally certified.

Very good results are obtained in the case of a testing
to stretch. Besides the tension-deformation dependency
it is also obtained the elasticity modulus, resistance to
fracture and the breaking tension.

We achieved the traction testing for five samples as
follows:

-Sample 1 built from phenolic fireproof resin
reinforced with fiberglass;

-Sample 2 built from polyesteric ortophtalic resin
reinforced with fiberglass;

-Sample 3 built from propylene – sulphonates;
-Sample 4 built from polyesteric fireproof resin

reinforced with fiberglass;
-Sample 5 built from acrylic polymer.
In figure 1. (Sample 1), figure  2 (Sample 2), figure  3

(Sample 3), figure 4  (Sample 4) and figure 5 (Sample 5)

we present the characteristic curves for the composite
materials of each plate.

In table 1 are presented the elasticity modulus and
the resistance to fracture for the five samples tested.

In the case of Sample 3 were introduced the elongation
for the maximum value of tension because appeared a
flowing phenomenon, the elongation in the moment of
fracture being 17 %.

Theoretical background regarding  the
experimental modal identification

Any mechanical system can be modeled by “n”
concentrated mass points “m

k
”, joint by elastic elements

with “k
k
” stiffness and elements with “c

k
” damping. For

this damped system with „“n” degrees of freedom,
subjected to an external excitation system {Q(t)},the
motion equations are given by the following relation:

  (1)
where

- [M], [C], [K]- the mass, damping and stiffness
matrices;

- - the acceleration, velocity and

displacement vectors;
- {Q(t)}- generalized forces vector.
The system response to an external excitation is

presented as a sum of “n” modal contributions due to
each separate degree of freedom:

(2)

where:  X(ω) - Fourier Transform of displacement;

Fig. 2. Characteristic curve (Sample 2)

Fig. 1. Characteristic curve (Sample 1)

Fig. 3. Characteristic curve (Sample 3)

Fig. 5. Characteristic curve (Sample 5)

Fig. 4. Characteristic curve (Sample 4)

Table 1
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{ψk}and {ψk} - the “k” order eigenvector and his
complex conjugate;

μ
k
 - the “k” order damping ratio;

ν
k
 - the “k” order damped natural frequency;

a
k 
 and a

k 
- norming constants of eigenvector;

ω - external excitation frequency.
In practical applications the modal vectors are

replaced by two modal constants   and   defined by:

              (3)

Using these notations we can determine the system
admittance, α

ij
(ω) defined as the rapport between the

displacement response and the force excitation:

 (4)

In the approximations made during the conception of
the mathematical model, it was used the concept of
discrete system with “n” liberty degrees, having its mass
concentrated in “n” material points. For a precise
approximation of the real system by a discrete system
“n”must have a high value (n→∞). This is not possible
because of experimental and processing techniques and
also because of the time needed for data processing. In
applications the frequencies domain is limited to a
reasonable width determined by the major resonances
of the analyzed equipment and the frequency domain of
application target. In these conditions the sum from (4)
is reduced to several components, noted in the following
with “n” too. The contributions of inferior and superior
modes are included in two correction factors known as
“inferior modal admittance”, -1 / M’

ij
ω2.(for inferior

modes) and “residual flexibility”,S’
ij
 (for superior

modes). The system admittance will be written as:

    (5)

Parameters modal experimental identification
In the following is presented the experiment for modal

identification of two plates: the first plate from phenolic
fireproof resin reinforced with fiberglass (Sample 1)
having the dimensions 600mm . 100 mm . 4.6 mm  and
the second plate from ortophtalic polyesteric resin
reinforced with fiberglass (Sample 2) having the
dimensions 600 mm . 100 mm . 4.4 mm.

The plates are rigidly fixed in a press with a mass of
80 Kg. The experimental montage is presented in figure
6.

Modal identification
It was made under Test Point software, a package of

programs for modal identification and for estimation of
the structural response to external excitation distributed
into the structure or concentrated in distinct points. The
modal identification is made by the following  next steps:

1. Determination of the frequency response functions.
In the range of 0 … 500 Hz frequencies, the plates have
eight eigenmodes. figure 9 (Sample 1) and figure  10
(Sample 2) present the frequency response function
(FRF) in Cartesian coordinates and figure 11 (Sample
1) and figure 12 (Sample 2) in polar coordinates,

Apparatus measuring system
Accelerometer B&K type 4391 (m=30g; Exciter

B&K type 8202; Conditioning amplifier B&K type 2626;
Charge amplifier type M1300; Digital measuring system
Spider 8.

Experiment
The plates were divided in four points equally

distributedP1,....,P4. The accelerometer was
successively mounted in points  P1,...,P4and for each
measuring point the plates were successively excited in
points P1,....,P4.

For each excitation conditions was measured the
excitation force and the plate acceleration response. Fig.
7 (Sample 1) and figure 8 (Sample 2) present the
experimental data corresponding to excitation in point
and measuring in point P4.

Fig.6. Experimental montage

Fig. 7. Time recorded characteristics (Sample 1)

Fig. 8. Time recorded characteristics (Sample 2)
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2. The approximate localization of the resonances and
determination in initial approximation of the modal
parameters μ

k
 and  ν

k
,k=1,2,...,n.

3. The first stage identification of modal parameters

Fig. 9. FRF in Cartesian coordinates (Sample 1)

corresponding to excitation in point 3P  and measuring
in point P4.

Fig. 13. Final panel with modal parameters and theoretic and experimental characteristics (Sample 1)

Fig. 11. FRF in polar coordinates (Sample 1)

Fig. 10. FRF in Cartesian coordinates (Sample 2)

Fig. 12. FRF in polar coordinates (Sample 2)

on limited frequency domains. The identification is made
using linear procedures, determining those modal
parameters which inserted in relation (5) generate
theoretical characteristics which approximate with
minimal error the experimentally determined FRF.
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4. The final identification of the modal parameters

over entire frequency range. The identification is made
using nonlinear procedure of recursive approximation,
determining those modal parameters which inserted in
relation (5) generate theoretical characteristics which
approximate with minimal error the experimentally
determined frequency response functions.

The figure 13 (Sample 1) and figure 14 (Sample 2)
presents the final panel of identification module in which
are represented in Cartesian coordinates the real and
imaginary parts of theoretic and experimental frequency
response functions. In the second part of the page it is a
table containing the modal parameters for all
eigenmodes.

It can be observed that there are very little differences
between the experimental and theoretical characteristics.

The modal parameters can be used for analysis of
structural modifications and for assessment of structure
response to given excitations concentrated in some
distinct points or distributed into the structure.

The utilization of modal analysis to determine the
elasticity modulus.

The transversal vibrations equation of bars is:

  (6)

Fig. 14. Final panel with modal parameters and theoretic and experimental characteristics (Sample 2)

where:
W(x,t)  is the transversal movement of medium fiber

of the bar;
E - is the elasticity modulus of the bar material;
I -  the moment of axial inertia of the bar section;
ρ - the density of the bar material;
f(x,t) - extrinsically force which reacts on the bar.
If the bar is embedded at one end and free at the

other the eigenfunctions have the form [15]:

The eigenfrequencies are[15]:

 (8)

where:
l is the bar length ;
β

r 
- are the roots of equation:

 (9)

We have: β =1.875; β =4.694; β =7.855; β =10.996;
β =14.137; β =17.279; β =20.420; β =23,562

Therefore, identifying the eigenfrequencies we can
determine the elasticity modulus with the relation:

           (10)

The characteristic bars on which we make the
measurements are presented in the table 2.

(7)

Table 2
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For the determination of elasticity modulus we use
the first four modes of vibration. The results are presented
in table 3.

If we make the medium for Bar 1 we obtain E=3801
MPa and for Bar 2, E=4555 MPa.

Conclusions
In the case of composite materials with random

distribution of reinforcement it is difficult to establish
the calculus relations for the elastic and strength
properties. This happened because it can’t be established
exactly the volumetric distribution of reinforcement and
the way in which this takes over the external stresses.

The determination of composite material properties
using the characteristic curves has the advantage that
information concerning the elasticity modulus, strength
to fracture and the fracture elongation can be obtained.
From figures 1 – 5 we notice that the elastic and strength
properties are closer to those of the matrix. This thing is
explicable by the fact that the number of fibers oriented
on the stress direction is much smaller than the total
number of fibers. Consequently, the matrix takes the
efforts in a greater percentage than in the case of the
one-way composites.

In the case of the propilen-sulphona sample we can
notice that the phenomenon of flowing appears, the
substance having a ductile behaviour. In case of samples
armed with glass fibers the breakage happens suddenly,
it has a fragile character. It is explained by the fact that
the breakage of the composite material happens in the
moment when the fibers give up.

The modal identification method has the advantage
that it is non-destructive and can be used in the case of
complex systems built from composite materials. But it
can’t be used to determine the mechanical parameters
characterizing the breakage. For the determination of
elasticity modulus were used just the first four modes of
vibration because if we take in the calculus any following
modes errors appear. The superior modes undervaluate
the elasticity modulus. This thing can be explained by
the fact that the internal frictions and the internal dumping
has effect on the modes of the superior vibrations.

The error given by the modal identification method
relative to the method of stretching test for the sample 1
is 3.85% and for sample 2 is 0.57%.Therefore, the modal
identification method gives very good results in finding
the elasticity modulus.
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